Thursday, May 23, 2019

Solving network community detection problem on quantum computers

Accepted paper in Advanced Quantum Technology journal

Shaydulin, Ushijima-Mwesigwa, Safro, Mniszewski, Alexeev "Network Community Detection On Small Quantum Computers", 2019, preprint at https://arxiv.org/abs/1810.12484

In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions.

Monday, May 13, 2019

PhD thesis proposal defense

Congratulations to Justin Sybrandt for successfully defending his PhD thesis proposal!



Monday, May 6, 2019

Synthetic planar graph generation

Accepted paper in Applied Network Science journal

Chauhan, Gutfraind, Safro "Multiscale planar graph generation", 2019, preprint at  https://arxiv.org/abs/1802.09617

The study of network representations of physical, biological, and social phenomena can help us better understand their structure and functional dynamics as well as formulate predictive models of these phenomena. However, due to the scarcity of real-world network data owing to factors such as cost and effort required in collection of network data and the sensitivity of this data towards theft and misuse, engineers and researchers often rely on synthetic data for simulations, hypothesis testing, decision making, and algorithm engineering. An important characteristic of infrastructure networks such as roads, water distribution and other utility systems is that they can be (almost fully) embedded in a plane, therefore to simulate these system we need realistic networks which are also planar. While the currently-available synthetic network generators can model networks that exhibit realism, they do not guarantee or achieve planarity. In this paper we present a flexible algorithm that can synthesize realistic networks that are planar. The method follows a multi-scale randomized editing approach generating a hierarchy of coarsened networks of a given planar graph and introducing edits at various levels in the hierarchy. The method preserves the structural properties with minimal bias including the planarity of the network, while introducing realistic variability at multiple scales.

Reproducibility: All datasets and algorithm implementation presented in this work are available at https://bit.ly/2CjOUAS

What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...