Showing posts with label multilevel algorithms. Show all posts
Showing posts with label multilevel algorithms. Show all posts

Friday, September 30, 2022

Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation

We are excited to announce that our paper received the best student paper award at #IEEE High Performance Extreme Computing #HPEC2022! Leading student is Cameron Ibrahim. Congratulations to all!

Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, Ilya Safro "Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation", 2022, preprint at https://arxiv.org/abs/2209.02895

One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits.





Thursday, July 14, 2022

Recently accepted papers in optimization and quantum and quantum inspired computing.

  • Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Indradeep Ghosh, Ilya Safro "Partitioning Dense Graphs with Hardware Accelerators", International Conference on Computational Science (ICCS), 2022, preprint at https://arxiv.org/pdf/2202.09420.pdf
  • Ankit Kulshrestha, Ilya Safro "BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms", IEEE Quantum Computing and Engineering (QCE), 2022, preprint at https://arxiv.org/abs/2204.13751
  • Xiaoyuan Liu, Ruslan Shaydulin, Ilya Safro "Quantum Approximate Optimization Algorithm with Sparsified Phase Operator", IEEE Quantum Computing and Engineering (QCE), 2022, preprint at https://arxiv.org/abs/2205.00118
  • Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Avradip Mandal, Sarvagya Upadhyay, Ilya Safro, Arnab Roy "Leveraging Special-Purpose Hardware for Local Search Heuristics", Computational Optimization and Applications, 2022, preprint at https://arxiv.org/pdf/1911.09810.pdf


Thursday, February 25, 2021

Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations

Combinatorial scientific computing in action! Our paper on accelerating 3D discrete fracture network flow simulations by multilevel graph partitioning is accepted in Mathematical Geosciences!



Hayato Ushijima-Mwesigwa, Jeffrey D. Hyman, Aric Hagberg, Ilya Safro, Satish Karra, Carl W. Gable, Gowri Srinivasan "Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations", accepted in Mathematical Geosciences, preprint at https://arxiv.org/abs/1902.08029, 2020

We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that takes advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low-permeability fracture media in the subsurface by explicitly representing fractures as discrete entities. The governing equations for flow and transport are numerically integrated on computational meshes generated on the interconnected fracture networks. Modern high-fidelity DFN simulations require high-performance computing on multiple processors where performance and scalability depends partially on obtaining a high-quality partition of the mesh to balance work work-loads and minimize communication across all processors.

The discrete structure of a DFN naturally lends itself to various graph representations, which can be thought of as coarse-scale representations of the computational mesh. Using this concept, we develop a variant of the multilevel graph partitioning algorithm to partition the mesh of a DFN. We compare the performance of this DFN-based mesh-partitioning with standard multi-level graph partitioning using graphbased metrics (cut, imbalance, partitioning time), computational-based metrics (FLOPS, iterations, solver time), and total run time. The DFN-based partition and the mesh-based partition are comparable in terms of the graph-based metrics, but the time required to obtain the partition is several orders of magnitude faster using the DFN-based partition. The computation-based metrics show comparable performance between both methods so, in combination, the DFN-based partition is several orders of magnitude faster than the mesh-based partition.

Friday, November 6, 2020

On improving nonlinear SVM scalability using multilevel frameworks

Our paper "AML-SVM: Adaptive Multilevel Learning with Support Vector Machines" is accepted at 2020 IEEE International Conference on Big Data. https://arxiv.org/abs/2011.02592

The support vector machines (SVM) is one of the most widely used and practical optimization based classification models in machine learning because of its interpretability and flexibility to produce high quality results. However, the big data imposes a certain difficulty to the most sophisticated but relatively slow versions of SVM, namely, the nonlinear SVM. The complexity of nonlinear SVM solvers and the number of elements in the kernel matrix quadratically increases with the number of samples in training data. Therefore, both runtime and memory requirements are negatively affected. Moreover, the parameter fitting has extra kernel parameters to tune, which exacerbate the runtime even further. This paper proposes an adaptive multilevel learning framework for the nonlinear SVM, which addresses these challenges, improves the classification quality across the refinement process, and leverages multi-threaded parallel processing for better performance. The integration of parameter fitting in the hierarchical learning framework and adaptive process to stop unnecessary computation significantly reduce the running time while increase the overall performance. The experimental results demonstrate reduced variance on prediction over validation and test data across levels in the hierarchy, and significant speedup compared to state-of-the-art nonlinear SVM libraries without a decrease in the classification quality. 

Saturday, September 19, 2020

How to use NISQ quantum devices to solve large-scale problems?

Our paper on multilevel hybrid quantum-classical  optimization "Multilevel Combinatorial Ooptimization  Across Quantum Architectures" is accepted in ACM Transactions on Quantum Computing! Big kudos to two lead former students Hayato and Ruslan! https://arxiv.org/abs/1910.09985

Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moore's law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave's quantum annealer and IBM's gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution.

Monday, May 6, 2019

Synthetic planar graph generation

Accepted paper in Applied Network Science journal

Chauhan, Gutfraind, Safro "Multiscale planar graph generation", 2019, preprint at  https://arxiv.org/abs/1802.09617

The study of network representations of physical, biological, and social phenomena can help us better understand their structure and functional dynamics as well as formulate predictive models of these phenomena. However, due to the scarcity of real-world network data owing to factors such as cost and effort required in collection of network data and the sensitivity of this data towards theft and misuse, engineers and researchers often rely on synthetic data for simulations, hypothesis testing, decision making, and algorithm engineering. An important characteristic of infrastructure networks such as roads, water distribution and other utility systems is that they can be (almost fully) embedded in a plane, therefore to simulate these system we need realistic networks which are also planar. While the currently-available synthetic network generators can model networks that exhibit realism, they do not guarantee or achieve planarity. In this paper we present a flexible algorithm that can synthesize realistic networks that are planar. The method follows a multi-scale randomized editing approach generating a hierarchy of coarsened networks of a given planar graph and introducing edits at various levels in the hierarchy. The method preserves the structural properties with minimal bias including the planarity of the network, while introducing realistic variability at multiple scales.

Reproducibility: All datasets and algorithm implementation presented in this work are available at https://bit.ly/2CjOUAS

Monday, April 29, 2019

Designing scalable nonlinear support vector machines

Accepted paper in Machine Learning journal 

Sadrfaridpour, Razzaghi, Safro, "Engineering fast multilevel support vector machines", 2019, preprint at https://arxiv.org/abs/1707.07657

The computational complexity of solving nonlinear support vector machine (SVM) is prohibitive on large-scale data. In particular, this issue becomes very sensitive when the data represents additional difficulties such as highly imbalanced class sizes. Typically, nonlinear kernels produce significantly higher classification quality to linear kernels but introduce extra kernel and model parameters which requires computationally expensive fitting. This increases the quality but also reduces the performance dramatically. We introduce a generalized fast multilevel framework for regular and weighted SVM and discuss several versions of its algorithmic components that lead to a good trade-off between quality and time. Our framework is implemented using PETSc which allows an easy integration with scientific computing tasks. The experimental results demonstrate significant speed up compared to the state-of-the-art nonlinear SVM libraries. 

Reproducibility: our source code, documentation and parameters are available at https://github.com/esadr/mlsvm

Friday, January 11, 2019

Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

Accepted paper at SIAM Multiscale Modeling and Simulations

Ruslan Shaydulin, Jie Chen, Ilya Safro "Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning", 2019, preprint at arXiv:1710.06552

Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers.


What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...