Showing posts with label graphs. Show all posts
Showing posts with label graphs. Show all posts

Friday, September 30, 2022

Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation

We are excited to announce that our paper received the best student paper award at #IEEE High Performance Extreme Computing #HPEC2022! Leading student is Cameron Ibrahim. Congratulations to all!

Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, Ilya Safro "Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation", 2022, preprint at https://arxiv.org/abs/2209.02895

One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits.





Thursday, July 14, 2022

Recently accepted papers in optimization and quantum and quantum inspired computing.

  • Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Indradeep Ghosh, Ilya Safro "Partitioning Dense Graphs with Hardware Accelerators", International Conference on Computational Science (ICCS), 2022, preprint at https://arxiv.org/pdf/2202.09420.pdf
  • Ankit Kulshrestha, Ilya Safro "BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms", IEEE Quantum Computing and Engineering (QCE), 2022, preprint at https://arxiv.org/abs/2204.13751
  • Xiaoyuan Liu, Ruslan Shaydulin, Ilya Safro "Quantum Approximate Optimization Algorithm with Sparsified Phase Operator", IEEE Quantum Computing and Engineering (QCE), 2022, preprint at https://arxiv.org/abs/2205.00118
  • Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Avradip Mandal, Sarvagya Upadhyay, Ilya Safro, Arnab Roy "Leveraging Special-Purpose Hardware for Local Search Heuristics", Computational Optimization and Applications, 2022, preprint at https://arxiv.org/pdf/1911.09810.pdf


Thursday, February 25, 2021

Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations

Combinatorial scientific computing in action! Our paper on accelerating 3D discrete fracture network flow simulations by multilevel graph partitioning is accepted in Mathematical Geosciences!



Hayato Ushijima-Mwesigwa, Jeffrey D. Hyman, Aric Hagberg, Ilya Safro, Satish Karra, Carl W. Gable, Gowri Srinivasan "Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations", accepted in Mathematical Geosciences, preprint at https://arxiv.org/abs/1902.08029, 2020

We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that takes advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low-permeability fracture media in the subsurface by explicitly representing fractures as discrete entities. The governing equations for flow and transport are numerically integrated on computational meshes generated on the interconnected fracture networks. Modern high-fidelity DFN simulations require high-performance computing on multiple processors where performance and scalability depends partially on obtaining a high-quality partition of the mesh to balance work work-loads and minimize communication across all processors.

The discrete structure of a DFN naturally lends itself to various graph representations, which can be thought of as coarse-scale representations of the computational mesh. Using this concept, we develop a variant of the multilevel graph partitioning algorithm to partition the mesh of a DFN. We compare the performance of this DFN-based mesh-partitioning with standard multi-level graph partitioning using graphbased metrics (cut, imbalance, partitioning time), computational-based metrics (FLOPS, iterations, solver time), and total run time. The DFN-based partition and the mesh-based partition are comparable in terms of the graph-based metrics, but the time required to obtain the partition is several orders of magnitude faster using the DFN-based partition. The computation-based metrics show comparable performance between both methods so, in combination, the DFN-based partition is several orders of magnitude faster than the mesh-based partition.

ELRUNA: Network Alignment Algorithm

Our network alignment algorithm ELRUNA is accepted in ACM Journal of Experimental Algorithmics. Turns out that three relatively simple node similarity rules can successfully compete with several state of the art algorithms and improve both the running time and alignment quality. You can get it at https://github.com/BridgelessAlexQiu/ELRUNA



Zirou Qiu, Ruslan Shaydulin, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro "ELRUNA: Elimination Rule-based Network Alignment", accepted in ACM Journal of Experimental Algorithmics, preprint at https://arxiv.org/abs/1911.05486, 2020

Networks model a variety of complex phenomena across different domains. In many applications, one of the most essential tasks is to align two or more networks to infer the similarities between cross-network vertices and discover potential node-level correspondence. In this paper, we propose ELRUNA (Elimination rule-based network alignment), a novel network alignment algorithm that relies exclusively on the underlying graph structure. Under the guidance of the elimination rules that we defined, ELRUNA computes the similarity between a pair of cross-network vertices iteratively by accumulating the similarities between their selected neighbors. The resulting cross-network similarity matrix is then used to infer a permutation matrix that encodes the final alignment of cross-network vertices. In addition to the novel alignment algorithm, we also improve the performance of local search, a commonly used post-processing step for solving the network alignment problem, by introducing a novel selection method RAWSEM (Random walk based selection method) based on the propagation of the levels of mismatching (defined in the paper) of vertices across the networks. The key idea is to pass on the initial levels of mismatching of vertices throughout the entire network in a random-walk fashion. Through extensive numerical experiments on real networks, we demonstrate that ELRUNA significantly outperforms the state-of-the-art alignment methods in terms of alignment accuracy under lower or comparable running time. Moreover, ELRUNA is robust to network perturbations such that it can maintain a close to optimal objective value under a high level of noise added to the original networks. Finally, the proposed RAWSEM can further improve the alignment quality with a less number of iterations compared with the naive local search method.

Thursday, February 11, 2021

Literature-based knowledge discovery to accelerate COVID-19 research

Our new paper on customization of AGATHA knowledge discovery model for COVID-19 is out!

Ilya Tyagin, Ankit Kulshrestha, Justin Sybrandt, Krish Matta, Michael Shtutman,  Ilya Safro
"Accelerating COVID-19 research with graph mining and transformer-based learning", 2021

https://www.biorxiv.org/content/10.1101/2021.02.11.430789v1

In 2020, the White House released the, "Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset," wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present an automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on graph-mining and the transformer model. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains (in some domains up to 0.97% ROC AUC) in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover on-going research findings such as the relationship between COVID-19 and oxytocin hormone.

Saturday, September 19, 2020

How to use NISQ quantum devices to solve large-scale problems?

Our paper on multilevel hybrid quantum-classical  optimization "Multilevel Combinatorial Ooptimization  Across Quantum Architectures" is accepted in ACM Transactions on Quantum Computing! Big kudos to two lead former students Hayato and Ruslan! https://arxiv.org/abs/1910.09985

Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moore's law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave's quantum annealer and IBM's gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution.

Sunday, July 12, 2020

Two papers on graph representation learning

 Accepted papers at Workshop on Mining and Learning with Graphs co-located with ACM KDD 2020! 

1) Ding, Zhang, Sybrandt, Safro "Unsupervised Hierarchical Graph Representation Learning by Mutual Information Maximization", 2020

Graph representation learning based on graph neural networks (GNNs) can greatly improve the performance of downstream tasks, such as node and graph classification. However, the general GNN models do not aggregate node information in a hierarchical manner, and can miss key higher-order structural features of many graphs. The hierarchical aggregation also enables the graph representations to be explainable. In addition, supervised graph representation learning requires labeled data, which is expensive and error-prone. To address these issues, we present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR), which can generate hierarchical representations of graphs. Our method focuses on maximizing mutual information between "local" and high-level "global" representations, which enables us to learn the node embeddings and graph embeddings without any labeled data. To demonstrate the effectiveness of the proposed method, we perform the node and graph classification using the learned node and graph embeddings. The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks. In addition, our visualization of hierarchical representations indicates that our method can capture meaningful and interpretable clusters.

2) Sybrandt, Safro "FOBE and HOBE: First- and High-Order Bipartite Embeddings", 2020

Typical graph embeddings may not capture type-specific bipartite graph features that arise in such areas as recommender systems, data visualization, and drug discovery. Machine learning methods utilized in these applications would be better served with specialized embedding techniques. We propose two embeddings for bipartite graphs that decompose edges into sets of indirect relationships between node neighborhoods. When sampling higher-order relationships, we reinforce similarities through algebraic distance on graphs. We also introduce ensemble embeddings to combine both into a "best of both worlds" embedding. The proposed methods are evaluated on link prediction and recommendation tasks and compared with other state-of-the-art embeddings. While being all highly beneficial in applications, we demonstrate that none of the considered embeddings is clearly superior (in contrast to what is claimed in many papers), and discuss the trade offs present among them. 

Saturday, October 19, 2019

How to find the best location for wireless charging lanes

Our paper is accepted in Journal of Industrial Management and Optimization 

Ushijima-Mwesigwa, Khan, Chowdhury, Safro "Optimal Installation for Electric Vehicle Wireless Charging Lanes", 2019

The emergence of electric vehicle wireless charging technology, where a whole lane can be turned into a charging infrastructure, leads to new challenges in the design and analysis of road networks. From a network perspective, a major challenge is determining the most important nodes with respect to the placement of the wireless charging lanes. In other words, given a limited budget, cities could face the decision problem of where to place these wireless charging lanes. With a heavy price tag, a placement without a careful study can lead to inefficient use of limited resources. In this work, the placement of wireless charging lanes is modeled as an integer programming problem. The basic formulation is used as a building block for different realistic scenarios. We carry out experiments using real geospatial data and compare our results to different network-based heuristics.

Reproducibility: all datasets, algorithm implementations and mathematical programming formulation presented in this work are available at https://github.com/hmwesigwa/smartcities.git

Wednesday, June 19, 2019

Hybrid quantum-classical algorithms

Our paper on hybrid quantum-classical algorithms is featured in IEEE Computer, the June's issue on quantum realism.

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian F.A. Negre, Ilya Safro, Susan M. Mniszewski, Yuri Alexeev "Hybrid Approach for Solving Optimization Problems on Small Quantum Computers", IEEE Computer, vol. 52(6), pp. 18-26, 2019

Solving larger-sized problems is an important area of research in quantum computing. Designing hybrid quantum-classical algorithms is a promising approach to solving this. We discuss decomposition-based hybrid approaches for solving optimization problems and demonstrate them for applications related to community detection.



Thursday, May 23, 2019

Solving network community detection problem on quantum computers

Accepted paper in Advanced Quantum Technology journal

Shaydulin, Ushijima-Mwesigwa, Safro, Mniszewski, Alexeev "Network Community Detection On Small Quantum Computers", 2019, preprint at https://arxiv.org/abs/1810.12484

In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions.

Monday, May 6, 2019

Synthetic planar graph generation

Accepted paper in Applied Network Science journal

Chauhan, Gutfraind, Safro "Multiscale planar graph generation", 2019, preprint at  https://arxiv.org/abs/1802.09617

The study of network representations of physical, biological, and social phenomena can help us better understand their structure and functional dynamics as well as formulate predictive models of these phenomena. However, due to the scarcity of real-world network data owing to factors such as cost and effort required in collection of network data and the sensitivity of this data towards theft and misuse, engineers and researchers often rely on synthetic data for simulations, hypothesis testing, decision making, and algorithm engineering. An important characteristic of infrastructure networks such as roads, water distribution and other utility systems is that they can be (almost fully) embedded in a plane, therefore to simulate these system we need realistic networks which are also planar. While the currently-available synthetic network generators can model networks that exhibit realism, they do not guarantee or achieve planarity. In this paper we present a flexible algorithm that can synthesize realistic networks that are planar. The method follows a multi-scale randomized editing approach generating a hierarchy of coarsened networks of a given planar graph and introducing edits at various levels in the hierarchy. The method preserves the structural properties with minimal bias including the planarity of the network, while introducing realistic variability at multiple scales.

Reproducibility: All datasets and algorithm implementation presented in this work are available at https://bit.ly/2CjOUAS

Saturday, March 30, 2019

Finding influential nodes in networks with consumable resources

Accepted paper in Network Science journal 

Ushijima-Mwesigwa, Khan, Chowdhury, Safro, "Centralities for Networks with Consumable Resources", 2019, preprint at https://arxiv.org/abs/1903.00642

Identification of influential nodes is an important step in understanding and controlling the dynamics of information, traffic, and spreading processes in networks. As a result, a number of centrality measures have been proposed and used across different application domains. At the heart of many of these measures lies an assumption describing the manner in which traffic (of information, social actors, particles, etc.) flows through the network. For example, some measures only count shortest paths while others consider random walks. This paper considers a spreading process in which a resource necessary for transit is partially consumed along the way while being refilled at special nodes on the network. Examples include fuel consumption of vehicles together with refueling stations, information loss during dissemination with error-correcting nodes, and consumption of ammunition of military troops while moving. We propose generalizations of the well-known measures of betweenness, random-walk betweenness, and Katz centralities to take such a spreading process with consumable resources into account. In order to validate the results, experiments on real-world networks are carried out by developing simulations based on well-known models such as Susceptible-Infected-Recovered and congestion with respect to particle hopping from vehicular flow theory. The simulation-based models are shown to be highly correlated with the proposed centrality measures.

Friday, January 11, 2019

Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

Accepted paper at SIAM Multiscale Modeling and Simulations

Ruslan Shaydulin, Jie Chen, Ilya Safro "Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning", 2019, preprint at arXiv:1710.06552

Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers.


What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...