Friday, September 19, 2025

What we do/Team/In news

Quantum Computing    Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, material science, and financial predictions. Quantum hardware manipulates with much more complex than binary information that is represented in classical computers. We are interested in quantum algorithms and methods of their hybridization with classical computing systems.

Machine Learning and Data Mining    Many standard machine learning and data mining algorithms are prohibitive for large-scale number of variables. For example, this can happen because of the slow convergence or NP-hardness of underlying optimization problems (such as in support vector machines and cut-based clustering). We are interested in algorithms that cope with such problems.

AI, Literature Based Discovery and Text Mining    Hypothesis generation is becoming a crucial time-saving family of techniques which allow researchers to quickly discover implicit connections between important concepts. We are interested in such techniques and complex text mining problems, in general. Applications include biomedical discovery with scientific texts, healthcare and social media.

Network Science and Graph Algorithms    Computational, modeling, theory and data problems related to complex networks in social/natural/information sciences, and engineering. The analysis often includes frequent pattern discovery, outliers detection, quantitative methods for importance ranking of network elements, time-dependent data analysis, evolution modeling, visualization, and community detection.

Combinatorial Scientific Computing    Discrete optimization problems on large-scale graphs that are used to accelerate the performance of scientific computing algorithms. Examples include (hyper)graph partitioning, reordering, and coloring to improve load-balancing, task mapping, and data locality on HPC.

Multiscale Methods    A broad range of scientific problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the prohibitively large number of variables involved. We develop multiscale approaches in which a hierarchy of coarse scale approximations is used to solve large-scale problems efficiently.

Sunday, September 7, 2025

IEEE Quantum Computing and Engineering 2025

We had a fantastic time at IEEE Quantum Computing and Engineering (a.k.a. Quantum Week) https://lnkd.in/esWPtjHH. This is a highlight of the year that never disappoints. The conference initiated many exciting collaborations, and I’m especially proud that our lab presented or participated in five papers this time.

Special thanks to all of our amazing collaborators who made these papers possible Yuri Alexeev Marwa Farag Kyle Sherbert Karunya Shirali Sergii Strelchuk Mitchell Chiew Filip Maciejewski Khoa Luu Samee Khan. 

1. Ilya Tyagin, Marwa Farag, Kyle Sherbert, Karunya Shirali, Yuri Alexeev, Ilya Safro  "QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimization Algorithm Circuits"

2. Mitchell Chiew, Cameron Ibrahim, Ilya Safro, Sergii Strelchuk "Optimal fermion-qubit mappings via quadratic assignment"

3. Bao Bach, Filip Maciejewski, Ilya Safro "Solving Large-Scale QUBO with Transferred Parameters from Multilevel QAOA of low depth"

4. Kien Nguyen, Bao Bach, Ilya Safro "Cross-Problem Parameter Transfer in Quantum Approximate Optimization Algorithm: A Machine Learning Approach"

5. Hoang-Quan Nguyen, Xuan-Bac Nguyen, Sankalp Pandey, Samee U. Khan, Ilya Safro, Khoa Luu

 "QMoE: A Quantum Mixture of Experts Framework for Scalable Quantum Neural Networks"

What made it even more special was reconnecting with our former students Ruslan Shaydulin and Joey Xiaoyuan Liu, now leading experts in quantum computing. Seeing their impact on the field is both exciting and inspiring.

Looking forward to next year’s Quantum Week in Toronto!






#QuantumComputing #QAOA #QuantumOptimization #IEEEQCE #QuantumEngineering #HybridAlgorithms #Research #MachineLearning #QML 


What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...