Wednesday, September 25, 2019

Multistart Methods for Quantum Approximate Optimization

Best student paper award at IEEE HPEC2019 goes to our lab! Congratulations to the leading student Ruslan Shaydulin!

Ruslan Shaydulin, Ilya Safro, Jeffrey Larson "Multistart Methods for Quantum Approximate Optimization", accepted at IEEE High Performance Extreme Computing Conference (HPEC) 2019, preprint at https://arxiv.org/abs/1905.08768


Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters to maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, multiple local optima in the space of parameters make it harder for the classical optimizer. In this paper we study the use of a multistart optimization approach within a QAOA framework to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.

No comments:

Post a Comment

What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...