Thursday, February 25, 2021

Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations

Combinatorial scientific computing in action! Our paper on accelerating 3D discrete fracture network flow simulations by multilevel graph partitioning is accepted in Mathematical Geosciences!



Hayato Ushijima-Mwesigwa, Jeffrey D. Hyman, Aric Hagberg, Ilya Safro, Satish Karra, Carl W. Gable, Gowri Srinivasan "Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations", accepted in Mathematical Geosciences, preprint at https://arxiv.org/abs/1902.08029, 2020

We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that takes advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low-permeability fracture media in the subsurface by explicitly representing fractures as discrete entities. The governing equations for flow and transport are numerically integrated on computational meshes generated on the interconnected fracture networks. Modern high-fidelity DFN simulations require high-performance computing on multiple processors where performance and scalability depends partially on obtaining a high-quality partition of the mesh to balance work work-loads and minimize communication across all processors.

The discrete structure of a DFN naturally lends itself to various graph representations, which can be thought of as coarse-scale representations of the computational mesh. Using this concept, we develop a variant of the multilevel graph partitioning algorithm to partition the mesh of a DFN. We compare the performance of this DFN-based mesh-partitioning with standard multi-level graph partitioning using graphbased metrics (cut, imbalance, partitioning time), computational-based metrics (FLOPS, iterations, solver time), and total run time. The DFN-based partition and the mesh-based partition are comparable in terms of the graph-based metrics, but the time required to obtain the partition is several orders of magnitude faster using the DFN-based partition. The computation-based metrics show comparable performance between both methods so, in combination, the DFN-based partition is several orders of magnitude faster than the mesh-based partition.

ELRUNA: Network Alignment Algorithm

Our network alignment algorithm ELRUNA is accepted in ACM Journal of Experimental Algorithmics. Turns out that three relatively simple node similarity rules can successfully compete with several state of the art algorithms and improve both the running time and alignment quality. You can get it at https://github.com/BridgelessAlexQiu/ELRUNA



Zirou Qiu, Ruslan Shaydulin, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro "ELRUNA: Elimination Rule-based Network Alignment", accepted in ACM Journal of Experimental Algorithmics, preprint at https://arxiv.org/abs/1911.05486, 2020

Networks model a variety of complex phenomena across different domains. In many applications, one of the most essential tasks is to align two or more networks to infer the similarities between cross-network vertices and discover potential node-level correspondence. In this paper, we propose ELRUNA (Elimination rule-based network alignment), a novel network alignment algorithm that relies exclusively on the underlying graph structure. Under the guidance of the elimination rules that we defined, ELRUNA computes the similarity between a pair of cross-network vertices iteratively by accumulating the similarities between their selected neighbors. The resulting cross-network similarity matrix is then used to infer a permutation matrix that encodes the final alignment of cross-network vertices. In addition to the novel alignment algorithm, we also improve the performance of local search, a commonly used post-processing step for solving the network alignment problem, by introducing a novel selection method RAWSEM (Random walk based selection method) based on the propagation of the levels of mismatching (defined in the paper) of vertices across the networks. The key idea is to pass on the initial levels of mismatching of vertices throughout the entire network in a random-walk fashion. Through extensive numerical experiments on real networks, we demonstrate that ELRUNA significantly outperforms the state-of-the-art alignment methods in terms of alignment accuracy under lower or comparable running time. Moreover, ELRUNA is robust to network perturbations such that it can maintain a close to optimal objective value under a high level of noise added to the original networks. Finally, the proposed RAWSEM can further improve the alignment quality with a less number of iterations compared with the naive local search method.

Thursday, February 11, 2021

Can we outperform Quantum Approximate Optimization Algorithm?

Check our new paper:

Xiaoyuan Liu, Anthony Angone, Ruslan Shaydulin, Ilya Safro, Yuri Alexeev, Lukasz Cincio "Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers", preprint at https://arxiv.org/abs/2102.05566, 2021

We propose a hybrid quantum-classical algorithm, Layer Variational Quantum Eigensolver (L-VQE), inspired by the Variational Quantum Eigensolver (VQE). L-VQE is a heuristic approach to solve combinatorial optimization problems on near term intermediate-scale quantum devices. We demonstrate the potential of the proposed approach by applying it to the problem of community detection, a famous problem in network science. Our large-scale numerical simulation study shows that L-VQE has the potential to outperform Quantum Approximate Optimization Algorithm (QAOA), and is more robust to sampling noise as compared with standard VQE approaches.


Literature-based knowledge discovery to accelerate COVID-19 research

Our new paper on customization of AGATHA knowledge discovery model for COVID-19 is out!

Ilya Tyagin, Ankit Kulshrestha, Justin Sybrandt, Krish Matta, Michael Shtutman,  Ilya Safro
"Accelerating COVID-19 research with graph mining and transformer-based learning", 2021

https://www.biorxiv.org/content/10.1101/2021.02.11.430789v1

In 2020, the White House released the, "Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset," wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present an automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on graph-mining and the transformer model. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains (in some domains up to 0.97% ROC AUC) in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover on-going research findings such as the relationship between COVID-19 and oxytocin hormone.

What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...