Thursday, February 25, 2021

ELRUNA: Network Alignment Algorithm

Our network alignment algorithm ELRUNA is accepted in ACM Journal of Experimental Algorithmics. Turns out that three relatively simple node similarity rules can successfully compete with several state of the art algorithms and improve both the running time and alignment quality. You can get it at https://github.com/BridgelessAlexQiu/ELRUNA



Zirou Qiu, Ruslan Shaydulin, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro "ELRUNA: Elimination Rule-based Network Alignment", accepted in ACM Journal of Experimental Algorithmics, preprint at https://arxiv.org/abs/1911.05486, 2020

Networks model a variety of complex phenomena across different domains. In many applications, one of the most essential tasks is to align two or more networks to infer the similarities between cross-network vertices and discover potential node-level correspondence. In this paper, we propose ELRUNA (Elimination rule-based network alignment), a novel network alignment algorithm that relies exclusively on the underlying graph structure. Under the guidance of the elimination rules that we defined, ELRUNA computes the similarity between a pair of cross-network vertices iteratively by accumulating the similarities between their selected neighbors. The resulting cross-network similarity matrix is then used to infer a permutation matrix that encodes the final alignment of cross-network vertices. In addition to the novel alignment algorithm, we also improve the performance of local search, a commonly used post-processing step for solving the network alignment problem, by introducing a novel selection method RAWSEM (Random walk based selection method) based on the propagation of the levels of mismatching (defined in the paper) of vertices across the networks. The key idea is to pass on the initial levels of mismatching of vertices throughout the entire network in a random-walk fashion. Through extensive numerical experiments on real networks, we demonstrate that ELRUNA significantly outperforms the state-of-the-art alignment methods in terms of alignment accuracy under lower or comparable running time. Moreover, ELRUNA is robust to network perturbations such that it can maintain a close to optimal objective value under a high level of noise added to the original networks. Finally, the proposed RAWSEM can further improve the alignment quality with a less number of iterations compared with the naive local search method.

No comments:

Post a Comment

What we do/Team/In news

Quantum Computing     Quantum computers are expected to accelerate scientific discovery spanning many different areas such as medicine, AI, ...